368 research outputs found

    Nuclear quantum transport for barrier problems

    Full text link
    A method is presented which allows one to introduce collective coordinates self-consistently, in distinction to the Caldeira-Leggett model. It is demonstrated how the partition function Z for the total nuclear system can be calculated to deduce information both on its level density as well as on the decay rate of unstable modes. For the evaluation of Z different approximations are discussed. A recently developed variational approach turns out superior to the conventional methods that include quantum effects on the level of local RPA. Dissipation is taken into account by applying energy smearing, simulating in this way the coupling to more complicated states. In principle, such a coupling must depend on temperature. Previous calculations along another microscopic approach show this fact to imply an intriguing variation of the transport coefficients of collective motion with T. The relevance of this feature is demonstrated for the thermal fission rate and for the formation probability of super-heavy elements.Comment: 8 pages, 4 figures, presented at FUSION03, Matsushima, Miyagi, Japan, Nov 12-15, 2003, to appear in Progress of Theoretical Physic

    The partition function of an interacting many body system: beyond the perturbed static path approximation

    Full text link
    Based on the path integral representation of the partition function of a many body system with separable two body interaction we propose a systematic extension of the perturbed static path approximation (PSPA) to lower temperatures. Thereby, special attention must be paid to instabilities of the classical mean field solution in functional space that cause divergencies within the conventional PSPA. As a result we develop an approximation applicable from high to very low temperatures. These findings are tested against exact results for the archetypical cases of a particle moving in a one dimensional double well and the exactly solvable Lipkin model. In particular, we obtain a very good approximation to the level density of the Lipkin model even at low thermal excitations. Our results may have potential applications in low temperature nuclear physics and mesoscopic systems, e.g. for gap fluctuations in nanoscale superconducting devices previously studied within a PSPA type of approximation. PACS: 5.30.-d, 24.60.-k, 21.10.Ma, 74.25.BtComment: 11 pages, 7 figures, replaced with shortened version accepted for publication in EPJB, minor changes not affecting any result

    CortexMorph: fast cortical thickness estimation via diffeomorphic registration using VoxelMorph

    Full text link
    The thickness of the cortical band is linked to various neurological and psychiatric conditions, and is often estimated through surface-based methods such as Freesurfer in MRI studies. The DiReCT method, which calculates cortical thickness using a diffeomorphic deformation of the gray-white matter interface towards the pial surface, offers an alternative to surface-based methods. Recent studies using a synthetic cortical thickness phantom have demonstrated that the combination of DiReCT and deep-learning-based segmentation is more sensitive to subvoxel cortical thinning than Freesurfer. While anatomical segmentation of a T1-weighted image now takes seconds, existing implementations of DiReCT rely on iterative image registration methods which can take up to an hour per volume. On the other hand, learning-based deformable image registration methods like VoxelMorph have been shown to be faster than classical methods while improving registration accuracy. This paper proposes CortexMorph, a new method that employs unsupervised deep learning to directly regress the deformation field needed for DiReCT. By combining CortexMorph with a deep-learning-based segmentation model, it is possible to estimate region-wise thickness in seconds from a T1-weighted image, while maintaining the ability to detect cortical atrophy. We validate this claim on the OASIS-3 dataset and the synthetic cortical thickness phantom of Rusak et al.Comment: Accepted (early acceptance) at MICCAI 202

    Damped collective motion of many body systems: A variational approach to the quantal decay rate

    Full text link
    We address the problem of collective motion across a barrier like encountered in fission. A formula for the quantal decay rate is derived which bases on a recently developed variational approach for functional integrals. This formula can be applied to low temperatures that have not been accessible within the former PSPA type approach. To account for damping of collective motion one particle Green functions are dressed with appropriate self-energies.Comment: revised version, submitted to Nuclear Physics A, 20 pages, 2 figure

    Comparisons of global topographic/isostatic models to the Earth's observed gravity field

    Get PDF
    The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values

    Simultaneous lesion and neuroanatomy segmentation in Multiple Sclerosis using deep neural networks

    Get PDF
    Segmentation of both white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. Typically these tasks are performed separately: in this paper we present a single segmentation solution based on convolutional neural networks (CNNs) for providing fast, reliable segmentations of multimodal magnetic resonance images into lesion classes and normal-appearing grey- and white-matter structures. We show substantial, statistically significant improvements in both Dice coefficient and in lesion-wise specificity and sensitivity, compared to previous approaches, and agreement with individual human raters in the range of human inter-rater variability. The method is trained on data gathered from a single centre: nonetheless, it performs well on data from centres, scanners and field-strengths not represented in the training dataset. A retrospective study found that the classifier successfully identified lesions missed by the human raters. Lesion labels were provided by human raters, while weak labels for other brain structures (including CSF, cortical grey matter, cortical white matter, cerebellum, amygdala, hippocampus, subcortical GM structures and choroid plexus) were provided by Freesurfer 5.3. The segmentations of these structures compared well, not only with Freesurfer 5.3, but also with FSL-First and Freesurfer 6.0

    Assessing periodicity of periodic leg movements during sleep

    Get PDF
    Periodic leg movements (PLM) during sleep consist of involuntary periodic movements of the lower extremities. The debated functional relevance of PLM during sleep is based on correlation of clinical parameters with the PLM index (PLMI). However, periodicity in movements may not be reflected best by the PLMI. Here, an approach novel to the field of sleep research is used to reveal intrinsic periodicity in inter movement intervals (IMI) in patients with PLM

    More Than Spikes: On the Added Value of Non-linear Intracranial EEG Analysis for Surgery Planning in Temporal Lobe Epilepsy.

    Get PDF
    Epilepsy surgery can be a very effective therapy in medication refractory patients. During patient evaluation intracranial EEG is analyzed by clinical experts to identify the brain tissue generating epileptiform events. Quantitative EEG analysis increasingly complements this approach in research settings, but not yet in clinical routine. We investigate the correspondence between epileptiform events and a specific quantitative EEG marker. We analyzed 99 preictal epochs of multichannel intracranial EEG of 40 patients with mixed etiologies. Time and channel of occurrence of epileptiform events (spikes, slow waves, sharp waves, fast oscillations) were annotated by a human expert and non-linear excess interrelations were calculated as a quantitative EEG marker. We assessed whether the visually identified preictal events predicted channels that belonged to the seizure onset zone, that were later resected or that showed strong non-linear interrelations. We also investigated whether the seizure onset zone or the resection were predicted by channels with strong non-linear interrelations. In patients with temporal lobe epilepsy (32 of 40), epileptic spikes and the seizure onset zone predicted the resected brain tissue much better in patients with favorable seizure control after surgery than in unfavorable outcomes. Beyond that, our analysis did not reveal any significant associations with epileptiform EEG events. Specifically, none of the epileptiform event types did predict non-linear interrelations. In contrast, channels with strong non-linear excess EEG interrelations predicted the resected channels better in patients with temporal lobe epilepsy and favorable outcome. Also in the small number of patients with seizure onset in the frontal and parietal lobes, no association between epileptiform events and channels with strong non-linear excess EEG interrelations was detectable. In contrast to patients with temporal seizure onset, EEG channels with strong non-linear excess interrelations did neither predict the seizure onset zone nor the resection of these patients or allow separation between patients with favorable and unfavorable seizure control. Our study indicates that non-linear excess EEG interrelations are not strictly associated with epileptiform events, which are one key concept of current clinical EEG assessment. Rather, they may provide information relevant for surgery planning in temporal lobe epilepsy. Our study suggests to incorporate quantitative EEG analysis in the workup of clinical cases. We make the EEG epochs and expert annotations publicly available in anonymized form to foster similar analyses for other quantitative EEG methods
    • …
    corecore